

USER’S
MANUAL

Protech

API Package

Ver. M2 Date: 2012/04/06

API Package User's Manual

Protech API Package
User’s Manual

Preface

This manual explains how to operate and configure Protech API Package. No part of this
publication may be reproduced or transmit in any form, or by any means, electronic, or mechanical,
including photocopying and recording, without written permission of Protech Systems Co., Ltd.
The information contained in this document is subject to change without prior notice. Protech does
not warrant that the document or information is error-free. If you find any problems in the
documentation, please report them to us in writing.

The software contains proprietary information of Protech Systems Co., Ltd.; it is provided under a
license agreement containing restrictions on use and disclosure and is also protected by copyright
law. Protech shall not be liable for technical or editorial errors or omissions contained herein; nor
for incidental or consequential damages resulting from the furnishing, performance, or use of this
software and accompanying documentation.

Protech reserves the right to make changes to any product or software to improve reliability,
function or design. For version updates or technical support, please contact your local sales
representative.

 Copyright 2011-2012 Protech Systems Co., Ltd. All rights reserved.

Protech Systems Co., Ltd.
No. 24, Lane 365, Yang Goang Street,

Nei Hu District, Taipei 114, Taiwan, R. O. C.
Tel: +886-2-8751-1111
Fax: +886-2-8751-1199

http://www.protech.com.tw

 API Package User's Manual

Introduction

Thank you for using Protech API Package.

The API solution provided by Protech Systems is a benefit to users to control the device with
ease without having to analyze the hardware. It means that the time-wasting issues happened
in general program development process, including trouble dealing with a diversity of
hardware systems and catching on individual hardware specifications, control methods and
communi- cation protocols in practical applications, and the like can be resolved with Protech
API Package.

Feature
The API solution provided by Protech Systems is a benefit to users for the following reasons:
Speed up product release date:
 The API package helps developers design programs without being familiar with the chipset
specifications and driver architecture.
Reduce workload on programming development items:
 Users can control the device by Protech API package directly – save time to write the
hardware drivers from zero.

Environment
Windows 32 bit OS + .NET Framework version 2.0 or above

Applicable Field
Industrial CPU Board
 POS PC
Applied Computer
Panel PC

Supported Function
Programmable GPIO
Digital IO
Watch Dog
Cash Drawer
Hardware Monitor
i-Button
UPS

API Package User's Manual

Table of Contents

Chapter 1 Getting Started..1-1
Section 1 API Package Content ..1-2
Section 2 Open API Package Program ...1-4

Chapter 2 Using API...2-1
Section 1 API Procedure...2-2
Section 2 Sample Code ...2-3

Chapter 3 API Package Program..3-1
Section 1 IO Control ...3-2
Section 2 Program GPIO...3-4
Section 3 Cash Drawer..3-5
Section 4 Watch Dog ..3-6
Section 5 SMBUS ...3-7
Section 6 Hardware Monitor...3-8
Section 7 Battery...3-9
Section 8 I-Button ...3-10

Chapter 4 Program Developing...4-1
Section 1 API Function...4-2
Section 2 Digital IO Function ...4-3
Section 3 GPIO Function ..4-5
Section 4 Cash Drawer Function ..4-6
Section 5 Watch Dog Function ...4-7
Section 6 Hardware Monitor Function ...4-8
Section 7 SMBUS Function..4-9
Section 8 UPS Function ..4-10
Section 9 I-Button Function..4-18

Appendix A FAQ..A-1
Section 1 Cannot Open API Program ..A-2
Section 2 Cannot Make Sure XML File Correct or Not ..A-2
Section 3 Cannot Find Functions in Support List ..A-3
Section 4 Cannot Run Self-developed Program ..A-3
Section 5 Cannot Use Demo Project..A-3
Section 6 Differences between Digital IO and GPIO ..A-3

 API Package User's Manual

 1-1

Chapter 1 Getting Started

In this Chapter, you will have a brief on the API Package functions
and content, and be ready to use the API interface.

Sections included:

 Section 1 API Package Content …………………..... 1-2

Section 2 Open API Package Program ……………... 1-4

1

Chapter 1 Getting Started

1-2 API Package User's Manual

Section 1 API Package Content

Users can find the enclosed API Package files inside the Protech Manual / Driver CD.
Depending on machine types, the API Package files may include the following:

Operation System Windows 32 bit + .NET Framework 2.0 or above

Directory Contents / File Name Description
Protech API Package User Guide
A01-0000-000-02-xxxxxx_en.pdf

User Manual in English

Protech API Package User Guide
A01-0000-000-02-xxxxxx_ch.pdf

User Manual in Chinese

IO Description.pdf ---

Document\

UPS Standard SBS Commands.pdf ---

Function DLL

Directory Function File Name Description
Cash
Drawer

Cash Drawer.dll
Driver to control Cash
Drawer

Digital Digital.dll
Driver to control Digital
IO

GPIO

GPIO.dll
WinIo.dll
WinIo.lib
WinIo.sys
WINIO.VXD

Driver to control GPIO

SMBUS

WinIo.dll
WinIo.lib
WinIo.sys
WINIO.VXD
SMBUS.dll

Driver to use SMBUS

WDT Watchdog.dll
Driver to control
Watchdog

i-Button
IButtonAPI.dll
IBFS32.dll

Driver to get i-Button

Hardware
Monitor

Hardware Monitor.dll
Driver to read hardware
data

Battery
SBS_Battery.dll
phymem.sys
pmdll.dll

Driver to read and control
battery data

multilangXML.dll Driver to open XML file

Initial.xml
XML file to initiate the
API Package

ProxAP.exe
API program executable
file

XML Files\Model Name*\Initial.xml XML file for each model

ProxAPI standard\

Version.ini Version information
 Model Name is dependent on your machine type.

Chapter 1 Getting Started

API Package User's Manual 1-3

 (continued)

Sample Program

Directory Contents / File Name Description
DEMO PROJECT\GPIO Sample
Code

C# VB6 VB.net Source
Code

DEMO PROJECT\Digital Sample
Code

C# VB6 VB.net Source
Code

DEMO PROJECT\

DEMO PROJECT\Watchdog Sample
Code

C# VB6 VB.net MFC
Source Code

Chapter 1 Getting Started

1-4 API Package User's Manual

Section 2 Open API Package Program

An XML file must be included in the API Package for the API program to be executed
normally. Take PS6509 for example, users will need the following files to run API Package:
- ProxAPI standard\Cash Drawer.dll
- ProxAPI standard\multilangXML.dll
- ProxAPI standard\Watch dog.dll
- ProxAPI standard\Hardware Monitor.dll
- ProxAPI standard\XML Files\6509\Initial.xml
- ProxAPI standard\ProxAP.exe

 When developing the program, make sure all necessary files are present in your working

directory, including the function DLLs, multilangXML.dll, and Initial.xml.

After executing the API program (ProxAP.exe), the program will display the related tabs
based on the machine type selected. That is, on the System tab, select your product model
name from the “Machine Type Load” list on the left pane, and then tap [Load XML] to get
the supported functions displayed in the Support List as shown below:

API functions supported by PROX-F701LF are - Hardware Monitor, Watch Dog and SMBUS.

 2-1

Chapter 2 Using API

In this Chapter, your will learn how to use the API procedure in
several programming languages.

Sections included:

 Section 1 API Procedure………………..…...….………… 2-2

 Section 2 Sample Code ………………..……….............. 2-3

2

Chapter 2 Using API

2-2 API Package User's Manual

Section 1 API Procedure

Take VB2005 .NET for example, first you must declare a function. You may create a module
in your project and fill in the function, cash drawer for example.

Declare Function GetCashDrawerStatus Lib CashDrawer.dll (ByVal num_drawer as short)
As Boolean

Declare Function CashDrawerOpen Lib CashDrawer.dll (ByVal num_drawer as short) As
Boolean

Next, create a button to call API Function
1. Call Cash drawer open event:

Private Sub cash_btn1_Click (ByVal Sender As System.Object, ByVal e As
System.EventArgs) Handles cash_btn1.Click
CashDrawerOpen(1), “1” specifies the cash drawer 1 port
CashDrawerOpen(2), “2” specifies the cash drawer 2 port
Timer1.start

2. Detect Cash drawer status:

A timer event can be created.

Private Sub Timer1_Tick (ByVal Sender As System.Object,ByVal e As System.EventArgs)
Handles Timer1.Tick
 Dim Receive_Status1 as Boolean
 Dim Receive_Status2 as Boolean
 Receive_Status1 = CashDrawerOpen(&H1)
 If Receive_Status1 = true then
 Text1.text = “cash drawer1 open” ‘enter text into textbox.
Else
 Text1.text = “cash drawer1 close” ‘enter text into textbox.
End if
‘===
 Receive_Status2 = CashDrawerOpen(&H2)
 If Receive_Status2 = true then
 Text2.text = “cash drawer2 open” ‘enter text into textbox.
Else
 Text2.text = “cash drawer2 close” ‘enter text into textbox.
End if
‘===
End sub

Chapter 2 Using API

API Package User's Manual 2-3

Section 2 Sample Code

(1) VB Declaration
Declare Function GetCashDrawerStatus Lib CashDrawer.dll (ByVal num_drawer as short)
As Boolean

Declare Function CashDrawerOpen Lib CashDrawer.dll (ByVal num_drawer as short) As
Boolean

(2) Call Function
Open cash drawer:
CashDrawerOpen(1)
Open cash drawer1
CashDrawerOpen(2)
Open cash drawer2

Check cash drawer status:
Dim receive_status as Boolean
Check cash drawer1 status
Receive_Status = CashDrawerOpen(&H1)
Check cash drawer2 status
Receive_Status = CashDrawerOpen(&H2)

--

(1) C# Declaration Method

Public class PortAccess
{
[DllImport(“CashDrawer.dll”,EntryPoint = “Initial_CashDrawer”)]
Public static extern void Initial_CashDrawer();
[DllImport(“CashDrawer.dll”,EntryPoint= “GetCashDrawerStatus”)]
Public static extern bool GetCashDrawerStatus()
[DllImport(“CashDrawer.dll”,EntryPoint = “CashDrawerOpen”)]
Public static extern bool CashDrawerOpen(short num_drawer);
}

(2) Call Function

Open cash drawer1
PortAccess.CashDrawerOpen(0x01); //check cash drawer1 status
Open cash drawer2
PortAccess.CashDrawerOpen(0x02); //check cash drawer2 status

Bool bstatus;
bstatus = PortAccess.GetCashDrawerStatus(0x01);
bstatus = PortAccess.GetCashDrawerStatus(0x02); //Before get cash drawer status, need
to initial cash drawer first

Chapter 2 Using API

2-4 API Package User's Manual

VB.NET extern function:
Declare Function SetMinSec Lib “WatchDog.dll” (ByVal kind As Short,ByVal
delay_time As Short) As Boolean
Declare Function Stopwatchdog Lib “WatchDog.dll” () As Short
Declare Function Setwatchdog Lib “WatchDog.dll” (ByVal value As Short) As Boolean
‘==
Declare Function Digital_Initial Lib “Digital.dll” () As Long
Declare Function Digtial_Set Lib “Digital.dll”(ByVal hex_value As Short) As Long
Declare Function Digtial_Get Lib ”Digital.dll” () As Short
‘==
Declare Function GPIO_Initial Lib “GPIO.dll” () As Long
Declare Function GPIO_SetPort Lib “GPIO.dll”(ByVal direct As long)
Declare Function GPIO_Set Lib “GPIO.dll”(ByVal dout_value As long) As Boolean
Declare Function GPIO_Get Lib “GPIO.dll”() As Short
‘==
Declare Function GetCashDrawerStatus Lib CashDrawer.dll (ByVal num_drawer as short)
As Boolean
Declare Function CashDrawerOpen Lib CashDrawer.dll (ByVal num_drawer as short) As
Boolean

--

VB 6 extern function:
Declare Function CashDrawerOpen Lib "CashDrawer.dll" (ByVal num_drawer As
Integer) As Boolean
Declare Function GetCashDrawerStatus Lib "CashDrawer.dll" (ByVal num_drawer As
Integer) As Boolean

 VB.net short = integer VB6

 3-1

Chapter 3 API Package Program

In this Chapter, you will learn to use the API Package program.

Sections included:

 Section 1 IO Control ………………………………..…... 3-2

 Section 2 Program GPIO ………………………......…… 3-4

 Section 3 Cash Drawer ………………………………..... 3-5

 Section 4 Watch Dog ………………………………….... 3-6

 Section 5 SMBUS ………………………………..…….. 3-7

 Section 6 Hardware Monitor …………………….……... 3-8

 Section 7 Battery ……………………………….............. 3-9

 Section 8 I-Button …………………………………........ 3-10

3

Chapter 3 API Package Program

3-2 API Package User's Manual

Section 1 IO Control

The API Package program demonstrates how to use the API Library in a user’s application.
 This program developed by VB.NET requires Microsoft .NET Framework version 2.0 or

above.

[Initial]
Initialize IO Function, and if successful the button will become
[Initial OK!] as shown right.

 If [Initial OK!] is not displayed, the execution continued may
fail.

IO Pin Information
The input and output pin numbers on this machine type will be displayed.

Chapter 3 API Package Program

API Package User's Manual 3-3

IO Pin Control
Dout Value Input the hex value to send to the IO Port.

Take 811LF for example, by default there are 8 output pins in total. If
you want to set all the output pins as “High”, fill “0x00FF” in the Dout
Value text field.
 The “FF” indicates the 8-bit binary value (11111111) as shown below:

Bit7(IO7) Bit6(IO6) Bit5(IO5) Bit4(IO4) Bit3(IO3) Bit2(IO2) Bit1(IO1) Bit0(IO0)
1 1 1 1 1 1 1 1

 Likewise, if you want to set all the output pins as “Low”, fill “0x0000” in

the Dout Value text field.

 When working with a 4in/ 4out type, fill in “0F”.

(i.e. the later 4 bits indicate the IO pin positions to be controlled)
N/A N/A N/A N/A Bit3(IO3) Bit2(IO2) Bit1(IO1) Bit0(IO0)

0 0 0 0 1 1 1 1

[Write] Tap to output the value of Dout Value to the hardware.

[Read] Tap to read the input signal value and show the value to the Result field.

Result The input signal value will be displayed in hex after [Read] is tapped.

Chapter 3 API Package Program

3-4 API Package User's Manual

Section 2 Program GPIO

[Initial]
Initialize IO Function, and if successful the button will become
[Initial OK!] as shown right.
 If [Initial OK!] is not displayed, the execution continued may
fail.

Direction Change
Multiple Pin Input the hex value to control pin functions as input or output.

For Protech products, the defined output is binary 1, and the defined
input is binary 0.

Take 811LF for example, by default it is 8in/ 8out type. Each pin can
be configured as input or output. If you want to set all the 16 pins as
output, fill “FFFF” in the Multiple Pin text field.
“FFFF” represents to bit16 ~ bit1 from left (MSB) to right (LSB).
 To restore factory default, reset the power to the machine.

[Set Direction] Tap to output the value of Multiple Pin to the system IO.

Result The returned value, true on success or false on failure, will be
displayed after [Set Direction] is tapped.

Chapter 3 API Package Program

API Package User's Manual 3-5

Section 3 Cash Drawer

[OPEN]
Tap to open the cash drawer.

Cash Drawer Status
Cash drawer status will be displayed after [OPEN] is tapped.
Cash drawer is closed as shown.

Cash drawer is open as shown.

 For example, PS6509 has two cash drawers, so the API program displays two buttons for

each drawer. For a machine with single cash drawer, on the other hand, the API program
displays one button, and so does to a machine that supports one cash drawer only.

Chapter 3 API Package Program

3-6 API Package User's Manual

Section 4 Watch Dog

Count Mode
Select the unit of time, second or minute, for the watchdog timer.

Setting Time
Set Timeout Set the timeout for the watchdog. The maximum timeout value is 255

seconds or minutes.

Watch Dog Control
Timeout Value Simulation timer of the API program, the running watchdog timeout

will be displayed (in seconds). It is not as accurate as a hardware
watchdog clock.

[START] Tap to start the watchdog timer. Meanwhile the [REFRESH] and
[STOP] buttons will be enabled.

[STOP] Tap to stop the watchdog timer.

[REFRESH] Tap to restart the watchdog timer.

Chapter 3 API Package Program

API Package User's Manual 3-7

Section 5 SMBUS

Users are able to test peripheral devices through the SMBus controller under this tab.

[Initial]
Tap to initialize the SMBus API program.

Slave Address

Set the SMBus position (in hex) to be read or written.
To read data: To write data:
Read up Index
Set the maximum amount (in hex) of data
to be read.

Set the index position (in hex) for writing
data.

 Data
[Read] Set data (in hex) to be written.
Tap to read data to the text boxes below. [Write]
 Tap to write data to the text boxes below.
SMBUS Data
Data being read or written will be displayed in the text boxes below, after [Read] or
[Write] is tapped.

[Clear]

Tap to clear all the text boxes under SMBUS Data ready for another entry.

Chapter 3 API Package Program

3-8 API Package User's Manual

Section 6 Hardware Monitor

[Monitor]
Tap to get the hardware monitoring values, such as the voltages, temperatures, and fan
speeds (rpm).

 It is machine type dependent.

Chapter 3 API Package Program

API Package User's Manual 3-9

Section 7 Battery

[Monitor]
Tap to get the UPS values.

 It is machine type dependent.

Chapter 3 API Package Program

3-10 API Package User's Manual

Section 8 I-Button

[Monitor]
Tap to get the i-Button data that will be displayed below the IBUTTON DATA field.

 4-1

Chapter 4 Program Developing

In this Chapter, you will learn essential functions when developing
the program.

Sections included:

 Section 1 API Function ………………………….…….... 4-2

 Section 2 Digital IO Function ……………………........... 4-3

 Section 3 GPIO Function ……………………….............. 4-5

 Section 4 Cash Drawer Function ……………….………. 4-6

 Section 5 Watch Dog Function …………………………. 4-7

 Section 6 Hardware Monitor Function …………………. 4-8

 Section 7 SMBUS Function ……………………………. 4-9

 Section 8 UPS Function ……………………………..…. 4-10

 Section 9 I-Button Function ……………………...….…. 4-18

4

Chapter 4 Program Developing

4-2 API Package User's Manual

Section 1 API Function

The API program-related sample programs, developed in VB.Net and C#, are provided for
easy use of the API Package. Refer to the main API functions listed as below.

API Function DLL

Digital IO
Digital_Initial
Digital_Set
Digital_Get

Digital.dll

GPIO (IO)

GPIO_Initial
GPIO_SetPort
GPIO_Set
GPIO_Get

GPIO.dll

Cash Drawer
CashDrawerOpen
GetCashDrawerStatus

CashDrawer.dll

Watchdog (WD)

Watchdog_Set
Watchdog_Stop
Watchdog_SetMinSec
Watchdog_Recount

WatchDog.dll

Hardware Monitor
HMWVoltage_Get
HWMtTemperature_Get
HWMFanSpeed_Get

Hardware Montior.dll

SMBUS
SMBUS_Initialization
SMBUS_Write
SMBUS_Read

m
ul

ti
la

ng
X

M
L

.d
ll

SM_Control.dll

Chapter 4 Program Developing

API Package User's Manual 4-3

Section 2 Digital IO Function

Digital_Initial

bool Digital_Initial () ;

Purpose Initialize Digital API Package.
Value None
Return True (1) on success, False (0) on failure
 Before using the API Package, this function should be called to pass XML variables to

the DLL.

Digital_Set

bool Digital_Set (short hex_value);

Purpose Set the digital logic state.
Value hex_value
Return True (1) on success, False (0) on failure

For a 4in/ 4out type, as illustrated below:

The 4-bit (bit0 ~ bit3) binary value represents the digital output signal.
The binary variable is defined as High (1) and Low (0).

Example Digtial_Set(0x01);

 Digtial_Set(0x09);

// Set DOUT0 as High

// 1001, DOUT3 and DOUT0 are High;
DOUT2 and DOUT1 are low

Chapter 4 Program Developing

4-4 API Package User's Manual

Digital_Get

short Digital_Get (void);

Purpose Get the digital input signal.
Value None
Return Digital input pin logic state

Example Short data;

data = Digital_Get();

// DIN data, High/ Low input status

Chapter 4 Program Developing

API Package User's Manual 4-5

Section 3 GPIO Function

GPIO_Initial

bool GPIO_Initial (void);

Purpose Initialize the GPIO API Package.
Value None
Return True (1) on success, False (0) on failure
 Before using the API Package, this function should be called.

GPIO_Set

bool GPIO_Set (long dout_value)

Purpose Set the GPIO logic state.
Value dout_value (in hex)
Return True (1) on success, False (0) on failure

GPIO_Get

long GPIO_Get ()

Purpose Get the GPIO input signal.
Value None
Return GPIO input pin logic state
 Make sure the GPIO pin is set as input.

GPIO_Setport

bool GPIO_SetPort (long Directvalue)

Purpose Set the GPIO pin as input/ output.
Value DirectValue (in hex)
Return True (1) on success, False (0) on failure

For an 8in/ 8out type of Protech products, the binary variable is defined as
Output (1) and Input (0).
The 8-bit (bit0 ~ bit7) binary value represents each GPIO Pin.

Example GPIO_Set(0x11); // 00010001, GPIO4 and GPIO0 are set to

Output; the others are Input

Chapter 4 Program Developing

4-6 API Package User's Manual

Section 4 Cash Drawer Function

CashDrawerOpen

bool CashDrawerOpen (short num_drawer);

Purpose Open the cash drawer API.
Value num_drawer = 1 (Open the Cash Drawer1)

2 (Open the Cash Drawer2)
Return True (1) on success, False (0) on failure

Example CashDrawerOpen(0x01); // Open the Cash Drawer1

GetCashDrawerStatus

bool GetCashDrawerStatus (short num_drawer);

Purpose Get the cash drawer status.
Value num_drawer = 1 (Get the Cash Drawer1 status)

2 (Get the Cash Drawer2 status)
Return True (1) on success, False (0) on failure

Example Short data;

data= GetCashDrawerStatus(0x01); // Get the Cash Drawer1 status
if (data)
MsgBox(“open1”); // Cash Drawer1 status “Open”
Else
MsgBox(“close1”); // Cash Drawer1 status “Close”
Endif

Chapter 4 Program Developing

API Package User's Manual 4-7

Section 5 Watch Dog Function

Watchdog_Set

bool Watchdog_Set (int value)

Purpose Set the timeout for the watchdog timer.
Value value = 0 ~ 255
Return True (1) on success, False (0) on failure

Watchdog_SetMinSec

bool Watchdog_SetMinSec (int kind)

Purpose Set the unit of time as second/ minute.
Value kind = 1 (Measured in unit of second)

2 (Measured in unit of minute)
Return True (1) on success, False (0) on failure

Watchdog_Stop

bool Watchdog_Stop (void)

Purpose Stop the watchdog timer.
Value None
Return True (1) on success, False (0) on failure

Watchdog_Recount

bool Watchdog_Recount (void)

Purpose Restart the watchdog timer.
Value None
Return True (1) on success, False (0) on failure

Chapter 4 Program Developing

4-8 API Package User's Manual

Section 6 Hardware Monitor Function

HMWVoltage_Get

float HMWVoltage_Get (short VoltType)

Purpose Get the hardware monitoring voltage value.
Value VoltType W83627HF W83627EHF SMSC3114 W83627UHG

0x01 VCoreA CPU VCore N/A VCore
0x02 VCoreB VIN0 +1.5V VIN0
0x03 +3.3VIN AVCC N/A AVCC
0x04 +5VIN +3VCC +5VIN 5VCC
0x05 +12VIN VIN1 +12V VIN1
0x06 -12VIN VIN2 N/A VIN2
0x07 -5VIN VIN3 N/A N/A

Return Float type data on voltage value

HMWTemperature_Get

float HMWTemperature_Get (short TempType)

Purpose Get the hardware monitoring temperature value.
Value TempType W83627HF W83627EHF SMSC3114 W83627UHG

0x01
CPU

temperature
System

temperature
CPU

temperature
CPU

temperature

0x02 N/A
CPU2

temperature
N/A N/A

0x03 N/A N/A N/A N/A

Return Float type data on temperature value

HMWFanSpeed_Get

float HMWFanSpeed_Get (short FanType)

Purpose Get the hardware monitoring fan speed value.
Value FanType W83627HF W83627EHF SMSC3114 W83627UHG

0x01 Fan1 SysFanIN FAN1 FAN1
0x02 Fan2 CPUFANIN FAN2 FAN2
0x03 N/A AUXFANIN N/A N/A

Return Float type data on fan speed value (rpm)

Chapter 4 Program Developing

API Package User's Manual 4-9

Section 7 SMBUS Function

SMBUS_Initialization

bool SMBUS_Initialization (int Device)

Purpose Initialize the SMBus API program and set the SMBus device address.
Value None
Return True (1) on success, False (0) on failure

SMBUS_Read

int SMBUS_Read (int Index)

Purpose Read the SMBus data.
Value Index (SMBus address to be read)
Return A byte Array representing the data

SMBUS_Write

bool SMBUS_Write (int Index, int data)

Purpose Write data into the SMBus.
Value Index

Data
(SMBus address to be written)
(Data to be written)

Return True (1) on success, False (0) on failure

Chapter 4 Program Developing

4-10 API Package User's Manual

Section 8 UPS Function

Initialization

bool SMBUS_Initialization (int Decive)

Value Device = 0x16 (The bq20z90/bq20z95 SBS Device Address)
Return True (1) on success, False (0) on failure

RemainingCapacityAlarm

uint RemainingCapacityAlarm()

Value None
Return Unsigned int value with a range of 0 to 65535

RemainingTimeAlarm

uint RemainingTimeAlarm()

Value None
Return Unsigned int value with a range of 0 to 65535

BatteryMode

byte BatteryMode()

Value None
Return Hex value with a range of 0 to 0xe383

AtRate

int AtRate()

Value None
Return Signed int value with a range of -32768 to 32767

Chapter 4 Program Developing

API Package User's Manual 4-11

AtRateTimeToFull

uint AtRateTimeToFull()

Value None
Return Unsigned int value with a range of 0 to 65534

AtRateTimeToEmpty

uint AtRateTimeToEmpty()

Value None
Return Unsigned int value with a range of 0 to 65534

AtRateOK

uint AtRateOK()

Value None
Return Unsigned int value with a range of 0 to 65535

Temperature

uint Temperature()

Value None
Return Unsigned int value with a range of 0 to 65535

Voltage

uint Voltage()

Value None
Return Unsigned int value with a range of 0 to 65535

Chapter 4 Program Developing

4-12 API Package User's Manual

Current

int Current()

Value None
Return Signed int value with a range of -32768 to 32767

AverageCurrent

int AverageCurrent()

Value None
Return Signed int value with a range of -32768 to 32767

MaxError

uint MaxError()

Value None
Return Unsigned int value with a range of 0 to 100

RelativeStateOfCharge

uint RelativeStateOfCharge()

Value None
Return Unsigned int value with a range of 0 to 100

AbsoluteStateOfCharge

uint AbsoluteStateOfCharge()

Value None
Return Unsigned int value with a range of 0 to 100

Chapter 4 Program Developing

API Package User's Manual 4-13

RemainingCapacity

uint RemainingCapacity()

Value None
Return Unsigned int value with a range of 0 to 65535

FullChargeCapacity

uint FullChargeCapacity()

Value None
Return Unsigned int value with a range of 0 to 65535

RunTimeToEmpty

uint RunTimeToEmpty()

Value None
Return Unsigned int value with a range of 0 to 65534

AverageTimeToEmpty

uint AverageTimeToEmpty()

Value None
Return Unsigned int value with a range of 0 to 65534

AverageTimeToFull

uint AverageTimeToFull()

Value None
Return Unsigned int value with a range of 0 to 65534

Chapter 4 Program Developing

4-14 API Package User's Manual

ChargingCurrent

uint ChargingCurrent()

Value None
Return Unsigned int value with a range of 0 to 65534

ChargingVoltage

uint ChargingVoltage()

Value None
Return Unsigned int value with a range of 0 to 65534

BatteryStatus

uint BatteryStatus()

Value None
Return Unsigned int value with a range of 0x0000 to 0xdbff

CycleCount

uint CycleCount()

Value None
Return Unsigned int value with a range of 0 to 65535

DesignCapacity

uint DesignCapacity()

Value None
Return Unsigned int value with a range of 0 to 65535

Chapter 4 Program Developing

API Package User's Manual 4-15

DesignVoltage

uint DesignVoltage()

Value None
Return Unsigned int value with a range of 0 to 65535

SpecificationInfo

byte SpecificationInfo()

Value None
Return Hex value with a range of 0 to 0xFFFF

CellBoltage01

uint CellBoltage01()

Value None
Return Unsigned int value with a range of 0 to 65535

CellBoltage02

uint CellBoltage02()

Value None
Return Unsigned int value with a range of 0 to 65535

CellBoltage03

uint CellBoltage03()

Value None
Return Unsigned int value with a range of 0 to 65535

Chapter 4 Program Developing

4-16 API Package User's Manual

CellBoltage04

uint CellBoltage04()

Value None
Return Unsigned int value with a range of 0 to 65535

SBS Command Values

Name Format
Size in
Bytes

Min
Value

Max
Value

Default
Value

Unit

RemainingCapacityAlarm unsigned int 2 0 65535 300
mAh or
10mWh

RemainingTimeAlarm unsigned int 2 0 65535 10 min

BatteryMode hex 2 0x0000 0xe383 —

AtRate signed int 2 -32768 32767 —
mA or
10mW

AtRateTimeToFull unsigned int 2 0 65534 — min

AtRateTimeToEmpty unsigned int 2 0 65534 — min

AtRateOK unsigned int 2 0 65535 —

Temperature unsigned int 2 0 65535 — 0.1 K

Voltage unsigned int 2 0 65535 — mV

Current signed int 2 -32768 32767 — mA

AverageCurrent signed int 2 -32768 32767 — mA

MaxError unsigned int 1 0 100 — %

RelativeStateOfCharge unsigned int 1 0 100 — %

AbsoluteStateOfCharge unsigned int 1 0 100+ — %

RemainingCapacity unsigned int 2 0 65535 —
mAh or
10mWh

FullChargeCapacity unsigned int 2 0 65535 — mAh or
10mWh

Chapter 4 Program Developing

API Package User's Manual 4-17

(continued)

Name Format
Size in
Bytes

Min
Value

Max
Value

Default
Value

Unit

RunTimeToEmpty unsigned int 2 0 65534 — min

AverageTimeToEmpty unsigned int 2 0 65534 — min

AverageTimeToFull unsigned int 2 0 65534 — min

ChargingCurrent unsigned int 2 0 65534 — mA

ChargingVoltage unsigned int 2 0 65534 — mV

BatteryStatus unsigned int 2 0x0000 0xdbff —

CycleCount unsigned int 2 0 65535 —

DesignCapacity unsigned int 2 0 65535 4400
mAh or
10mWh

DesignVoltage unsigned int 2 0 65535 14400 mV

SpecificationInfo hex 2 0x0000 0xffff 0x0031

CellVoltage4 unsigned int 2 0 65535 — mV

CellVoltage3 unsigned int 2 0 65535 — mV

CellVoltage2 unsigned int 2 0 65535 — mV

CellVoltage1 unsigned int 2 0 65535 — mV

Chapter 4 Program Developing

4-18 API Package User's Manual

Section 9 I-Button Function

Decode_Ibutton_Process

bool Decode_Ibutton_Process(short[] buffer)

Purpose Get the i-Button data.
Value Buffer = i-Button read will sent to this buffer
Return True (1) on success, False (0) on failure

 A-1

Appendix A FAQ

In this Chapter, frequently asked questions accompanying the API
Package will be clarified.

Sections included:

 Section 1 Cannot Open API Program ……...………....... A-2

 Section 2 Cannot Make Sure XML File Correct ….......... A-2

 Section 3 Cannot Find Functions in Support List …........ A-3

 Section 4 Cannot Run Self-developed ……................... A-3

 Section 5 Cannot Use Demo Project ………………….... A-3

 Section 6 Differences between Digital IO and GPIO …... A-3

A

Appendix A FAQ

A-2 API Package User's Manual

Section 1 Cannot Open API Program

Answer: There are two possible reasons:
(1) .Net framework 2.0 or above is not installed on the operating system yet.
(2) Lack of an XML file for the API Package.

Section 2 Cannot Make Sure XML File Correct or Not

Answer: After opening the API program, you can verify whether all functions for this
model are presented in the Support List on the System tab.

 The Initial.xml file in the ProxAPI standard folder is required to be replaced when using

different machine type.

For example, if the PS3100 is desired, replace the XML file by one of the following:
1) Manually replace the XML file, by overwriting the old Initial.xml (ProxAPI standard\)

with the new one (ProxAPI standard\XML Files\PS3100\Initial.xml). Then verify it in
the API program.

2) In API program, select PS3100 from the “Machine Type Load” list on the left pane, and
then tap [Load XML] to have the program replace the Initial.xml automatically.

Appendix A FAQ

API Package User's Manual A-3

Section 3 Cannot Find Functions in Support List

Answer: Functions displayed in the Support List are machine type dependent. Take PS3100
for example, the I/O Type field is marked with “N/A” in the Support List and you will be
unable to find the IO Control tab as the PS3100 does not support Digital I/O.

Section 4 Cannot Run Self-developed Program

Answer: Make sure that all the API Package files are placed in your working directory and
all links are already set. Meanwhile, the Initial.xml file has to be in place as well for the
functions to work correctly.

Section 5 Cannot Use Demo Project

Answer: When using the Demo Project provided by Protech, you should make sure the
Initial.xml file included in the API package corresponds to your developing machine type, to
secure the link between files.

Section 6 Differences between Digital IO and GPIO

Answer: Each GPIO pin can be configured to be input or output, while Digital IO cannot.
Therefore, you can change the GPIO pin direction from input to output, and vice versa.

By default, a 4in/ 4out type will be provided for developing applications. Note that these
changes will be overwritten with default values after restarting the machine.

If the machine type supports GPIO, the additional Program GPIO tab will be displayed in
the API program.

	Protech API Package
	Introduction

	Table of Contents
	Chapter 1 Getting Started
	Section 1 API Package Content
	Section 2 Open API Package Program

	Chapter 2 Using API
	Section 1 API Procedure
	Section 2 Sample Code

	Chapter 3 API Package Program
	Section 1 IO Control
	Section 2 Program GPIO
	Section 3 Cash Drawer
	Section 4 Watch Dog
	Section 5 SMBUS
	Section 6 Hardware Monitor
	Section 7 Battery
	Section 8 I-Button

	Chapter 4 Program Developing
	Section 1 API Function
	Section 2 Digital IO Function
	Section 3 GPIO Function
	Section 4 Cash Drawer Function
	Section 5 Watch Dog Function
	Section 6 Hardware Monitor Function
	Section 7 SMBUS Function
	Section 8 UPS Function
	Section 9 I-Button Function

	Appendix A FAQ
	Section 1 Cannot Open API Program
	Section 2 Cannot Make Sure XML File Correct or Not
	Section 3 Cannot Find Functions in Support List
	Section 4 Cannot Run Self-developed Program
	Section 5 Cannot Use Demo Project
	Section 6 Differences between Digital IO and GPIO

